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1 Introduction

In an era with modern computers and well-established root-
finding -algorithms, the numerical solution of transcendental
equations is relatively straightforward. It may be of interest to
heat transfer researchers and students, however, that it is also
possible to state explicit solutions for transcendental equations
arising in a variety of heat transfer problems. Explicit solutions
to many transcendental equations have been developed for a
variety of non-heat-transfer applications, such as celestial me-
chanics [ the solution of Kepler’s equation for elliptic and hyper-
bolic orbits (Siewert and Burniston, 1972)], ferromagnetism
[the molecular field equation (Siewert and Essig, 1973)], nu-

clear reactor theory [the ‘“critical condition’” for a bare reactor .

(Siewert, 1973)], and applied mechanics [the eigenvalues of a
clamped plate (Siewert and Phelps, 1978)]. The general theory
for solving these problems is based on the methods of Muskhe-
lishvili (1953) and has been developed by Burniston and Sie-
wert (1973).

The procedure for solving transcendental equations. for roots
*zZm,om = 0, 1, ..., depends on formulating an appropriate
Riemann problem of complex variable theory and then express-
ing the solution(s) of the transcendental equation in terms of
a canonical solution of that problem. For the Riemann problem
a function €),,(z) that is analytic in the complex plane except for
the branch cut [~1, 1] is separated into a product of functions,

Qn(2) = An(2)An(—2), (n

(1 e., the so-called Wiener—Hopf factorization), where A, (z)
is analytlc in the complex plane except for the branch cut [0,
1]. The Riemann problem is defined by the boundary condition

®.(x) = 0,(x)®,(x), x€(0,1), “(2)
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where the superscripts + and — denote the approach of z to the
real axis x € (0, 1).from above and below, and o

Qn(x)
Q. (x)

Here and elsewhere, arg Q. (x) = tan™' [Im Q*(x)/ReQ*(x)]

The objective is to find a function <I> (z) that is analytic in the
plane cut from 0 to 1 along the real axis and nonvanishing in
the finite plane so that ©,,(x) will be continuous and nonvan-
ishing for x € (0, 1). Then the canonical solution for &,(z)
can be written as (Burniston and Siewert, 1973)

Ou(x) = GE = xpl2i arg QL G)

B,(2) = (1~ 2)~"% exp[;lr-f arg ﬂ:.(x);—i’ff;], @)

with arg Q,,(0) = 0. The index k,, is 'such that 27k, is the
change in the argument of ©,,(x) as x varies from O to 1.

Our objective here is to bring together in one place some
existing ' closed-form' solutions of transcendental equations,
available in mathematics literature, and show they are applicable
to heat transfer. In the process we illustrate that the transcenden-
tal equation for the convectively cooled thin fin problem is a
special case of a transcendental equation arising in a radiative
heat transfer problem. A secondary objective is to check the
closed-form solutions numerically.

We illustrate in Sec. 2 the general procedure for solving
such problems with the solution of the transcendental equation
arising in the convective heat loss from a thin fin. In Sec. 3 we
provide the closed-form solutions for two one-dimensional heat
conduction problems in rectangular geometry. Then in Sec. 4
the solutions of the Wien displacement law and the asymptotic
eigenvalue of the radiative transfer equation are given. Section
5 contains a few comments about the numerical evaluation of
the closed-form eguations.

2 Convectively Cooled Thin Fin Problem

The fin we consider is thin enough that there is only one
dimension in which the temperature T'(x) varies along 0 = x
= L due to a convective heat loss along the perimeter ?. The
temperature at the base of the fin is a given value T(x) = T,
and the environment is at an external temperature 7,. The fin
cross-sectional area is A, its thermal conductivity is k, and the
constant convective heat transfer coefficient is k.. The govern-
ing partial differential equation is

2,
L8 _ g - )
where 6(x) = [T(x) - T.}/[To — T ] and where 8° = h, ?/kA
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We shall -assume the fin has an:ipsulated tip so that d7(x)/
dx| .. = 0. The equation for the.fin.efficiency n, 0 s n'= 1,
is given in introductory heat transfer textbooks as (Holman,
1990; Incropera and -DeWitt, 1996; Mills, 1993)

n = —-——-—Q——— = — tanh (x),
hPL(To—T,) X

for x - BL, and where the overall heat transfer from the fin is
Q. This is a transcendental equation if we seek L for a specified

7. The equation can be rearranged 50 that we seek the zeros of
the functwn '

. (6)

A(z) = 1 = nz tanh =" (1/2),

o o ; o
=1-1 f e , N
: 2z 4
wherez = l/nx. =7 . '
Because the roots of Eq. (7) are the two elgenvalues *vp of
the radiative; transfer equation. for isotropic scattering (Case
and Zweifel, 1967), the function A(z) has been extensively
investigated and the eigenvalues were tabulated many years ago
(Case et al 1953). We can obtain closed-form solutions for x
= (nve)~ afmr taking over from: Siewert (1980) the prevlously
developed solutions fot v, which will now be briefly summa-
rized.
A(z) is analytlc in the complex plane cut from —1to 1 along
the real axis, and satisfies the equations A(Q) = 1, A(») =
— n, and, for |z| > 1, A(z) = A(®) — n(z7%/3 + z7%/5 +
.)., The boundary values as the functlon approaches the cut
from above/below are ‘given by

A*(v) = lim A(u * i)

= \v) = migul2, ve(-1,1),  (8)

where » : ; ’
Ap)=1-nv btanh'l v, veE(-11). 9)
Since A(z) vanishes at *vq, the function Ao(z) = [A(®)]?

X Bo(2)(vo — 2) is chosen to satlsfy Eq. (1). Then the function
®o(z) is continuous and nonvamshmg for x € (0, 1) and satis-
fies Bq. (2) with index k, = T since 2r is the change in the
argument of ©y(x) as x varies from 0 to 1. Thus from Eqs. (4)

and (8),
o (wnv/2> dy ] . (10)
CANw) v -z4
Az) = A@) BB~ (WE~ 2, . (11)
it follows that the desired root we seek satisfies the equanon

ﬁ’z +A(z)[1‘\(°°)‘1>o(2)<1>o(-z)] L (12)

From thlS equatlon Slewert (1980) obtamed two parncularly
concise equat:ons fox l/o by ‘settmg 2=0 and by lettmg ZTrem,
respectively: ... L .

'z'._..__l_* . -2f ' (wnv/z) dv] '
e A<>°"P[,‘£Lo“a‘,‘~ OV »,,.“3.?)

f (mw/Z)
Av)

From elther of these equatlons the value of v can: bc computed
which can be used to determine:x = f L = (nvo)” -

1
$o(2) =(1u*'.'~z);“'expy[-71~r-. fo tan

|
. um 3A(°°) --I t:an (13b)
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3. Heat Conduction Problems - x ity

"~ We tum now to thé cons1de f. ‘hansc;ndental equatlons
that arisé in the solutions of one-dimeénsiondl heat conduétion
problems using the separation of variables tec nique. We con-
sidér the solutions of the ‘problems (ﬁzmk 1989 f993) ‘

2
d;x'——(zx) T =0, 0<x<L, (14
~0 D g1y =0, for x= Fuic e )
I SRR
& "’;ﬁgf) +HI® =0, for x=L  (16)

where o; = 0 or 1 and H;, = 0, 1, or h,,/k, where h; is_the
convective heat transfer coefficient at surface j = 1 or 2 and &;
is the corresponding thermal conductivity. We seek the eigen-
values 8, that are the roots of different transcendental equatlons
depending on the values of the coefficients a; and-H,." :

»One Insulated Surface. We consider-the case where «; =
a, = 1 and either H, = H or H, = H. Then the equatlon for
the eigenvalues 8, is (Ozisik, 1989, 1993)

Bl tan Bul = w, (17)

which is a transcendental equatlon when w = HL > 0'is known.
Numerical values are given in Table 4.20 of Abramowitz and
Stegun (1964) and in Appendix II of Ozis1k (1993): Fhisiéqua-
tion was solved by Burniston and Slewert (1973) where it was
transforined with the substitution 8,,L = iz to one’ whcfe the
Toots are to be determined for the equation

z —-51;- [ln (;::) * 2m7ri] =0,

where the symbol “‘In’’ denotes the principal branch of the
natural logamhm functlon in the plane cut from —1 to 1 along
the: real axis. For:

i 1 z-1
Ao(z) =~z[z—§;1n (z+ 1)] ,

' ZAn(@) = Ao(2) -

the results for the posmve roots. are (Burmston and Slewert
1973)

1/2 1
BoL = (%) | exp{— %fo [arg AF ()

(18)

(19a)

imzlw, (195)

and

. L y 1 :
BaL = = (4m? — 1)V exp['- lf arg ﬂ;(u)ﬂ] ,

2 T Jo v
m=1,2 ..., (20b)

where - -

iy 1 L=v\Nl s nr,
Aogu) = V[V o In (-——-——-1 " V)] mivw; (21a)
e PR = [AL O] + AR (21D)
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Fixed Surface Temperature.: We next consider the case
where one surface is-at temperature T and shift the temperature
wvariable so-that the surface temperature is 0. Then from Egs.
(15)~(17) we set a; = 1, Hy = H, @, = 0 or H, = 1 (or,
alternatively, @, = 0, H; = 1, a; = 1'or H, = H). The equation
for the eigenvalues 8, is (Ozisik, 1989, 1993)

BnL cot B, L= ~HL. (22)

Numericzﬂ values are given in Table 4.19 of Abramowitz and
Stegun (1964 ) and in Appendix II of Oz1s1k (1993). Burniston
and Siewert (1973) showed that the roots of Eq. (22) are

1
,3,,,L=m7rexp[-1-f argQ;,‘,(V)g—-I-/-:I, m=12,...,
' T Jo S e -

. . "(23)
where,y for knon values of:w = 7-1/HL <0, o
Qi) = [ASOOT? + mimwh?, - (24a)
and ' o ‘
At =1+%m (1 - ") + miov/2.  (24b)
2 1+v

4 - Radiative 'Ti'ansfer Prob‘lems; N :
" The Wien Displacement Law. The equation for the black-

body emissive power E,, as a function of wavelength.\ and
absolute temperature T is B

- . G\ -
Ebh P T e
exp(C/AT) ~ 1
where C; = 3.742 X 10* W um*/m* and C, = 1.4389 x 10*
- um-K. From dE;/d\ = 0 it follows that the wavelength:\,

for the maximum power is the solution of the transcendental
equation ,

(25)

(5 — x) exp(x) =5, - (26)

where x = C,/\,.T. The solution has been given as (Siewert,
1981) : , '

=4 ex -—k‘-l—f“ tan—i . T S wa]
N In5-~5~¢t—-Int

a
X ——2, (27
, t+5} ‘( )

which givés a value of x = 4.96511 . . ..

The Eigenvalues of the Radiative Transfer Equation.
Siewert (1980) developed closed-form solutions for computing
the largest three eigenvalues v;, j = 0, 1, and 2, for the radiative
transfer equation :

5
#5‘1(7', W)+ I(T, w)
T

L ' 1
=13 Q2+ DAPGW f_l Pi(u)I(r, w)dp',  (28)

"m0
that arise. after. the substitutibni
' L(T, p) = d(v, ) exp(—7/v). (29)

(The eigenvalues v; and v, can occur when the scattering-is
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more than linearly anisotropic.) The eigenvalues can be com-
puted. as roots of the equation e

B By d i .
A =1- %fﬁw (30)

Z— M
where
L
gz, 2) = 2, (2L + 1) figi(2) Pi(2) (31)
L . =0 .
and g,(z) are the Chandrasekhar (1960) polynomials .
(I + Dgna(z) — zugi(z) + lgi-1(z) =0 (32)

with A, = (21 + 1)(1 — nf;) and go(z) = 1 and g_,(2) = 0.
Note Eq. (7) is a special case of Eq. (30) for the case of
isotropic scattering with g(u, u) = 1. The generalizations of
Eqs. (13) for the closed-form equations for v}, the square of
the largest eigenvalue, are

P 4*3"'1' _,(11'171/3(1/,1/)/2)51_3 : ’
vo A(w),“"[ 5 N N Vo m ) S

g . . |
vi=1- Ef tan-! (ang,(v, DAW
’ mdo Nw)
o n LioF .
+ —— B, (33b
and ‘the‘ generalizations of the A(®) and \( V)'in Eq. (’9) are
given by

L:
A) =TT (1 - n5),

(34a)
=0
M) =1+ %V-g(l/, ) In <i ; Z)
; L |
+ v T 2+ Dfg)Ti).

(34b)
I=f . ;
Siewert (1980) has given equations for computing the B, and
F[(V ). ‘)‘ - .

5 "Nuﬁeﬁcm Tests

All' the explicit solutions were numerically verified by com-
paring their values to those obtained by iterative solution of the
corresponding implicit equations for a variety of values of the
independent variables. Roots of the implicit equations were
found to a precision of 107" using a combination of the New-
ton—Raphson and bisection methods.

Integrals for the explicit solutions other than the radiative
transfer eigenvalues were evaluated using Simpson’s rule and
were evaluated with sufficient precision to obtain roots that
agreed to within 10~° of the implicit solutions. For the thin fin
problem, the integral was divided into two'integrals of the
ranges 0= v =0.95 and 0.95 = v = 1.0, and €qually spaced
points along the abscissa were concentrated in the second inte-
gral. Agreement of the roots of the implicit solutions over the
full range of the parameter n required between 10° and 7 X
10* points, depending on the value of 7. For the conduction
problems, agreement in the solutions was verified over a large
range of the parameter and for different eigenvalue indices m.
Agreement in the roots for the fixed surface. temperatute prob-
lem for m = 1'and =5 = w = 0'required 6.5 X 10* integration
points. Agreement in the roots for the insulated surface problem
for m =1 and 0 = w = 10 required between 3.2 X10* and
1.3 X 10° points, depending on the value of w. Finally, verifica-
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tion of the solution o' the: Wién:-‘equation reqmred 1 6 % 10*
points. BN

For the radiative transfer elgenvalue problem, mtegratlon in
the explicit solution was pérfonned using the Clenshaw—Curtis
quadrature procedure of MAPLE V (Char et al., 1992). Agree-
ment in the eigenvalue was obtained to at least nine significant
digits using both Eq. .(33a),and Eq..(33b) for a fourth-order
binomial model of the coefficients f,. It was observed it was
much easier to obtain good ﬁuinenéal aceuracy with Eq. (33))
than wn:h Eq. (33a)

6 Summary

We have shown:1 zhcfe isa nch hterature of clesed-form solu-
tions of transcendental equations that canbe taken aver to five
classical conduction, .convection, and radlatlon heat transfer
problems. All solutions evolve from the same:canonical form
given by Eq. (4):but are so complicated they reveal little physi-
cal insight. While it can hardly be recommended that these
complicated integrals are easier to implement than a straightfor-
ward iteration routine, the solutions of the associated transcen-
dental equations contribute an. interesting perspective to the
folklore surrounding the solutlon of such problems
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